ON THE INTERACTION OF MEMORY AND PROCRASTINATION: IMPLICATIONS FOR REMINDERS, DEADLINES, AND EMPirical ESTIMATION

Keith Marzilli Ericson
Boston University Questrom School of Business

Abstract
The interaction between present-bias and limited memory can explain why individuals do not act at deadlines and why providing reminders can have large effects. Individuals in my model must choose when and whether to complete a task, but may forget or procrastinate. A calibration exercise shows that assuming perfect memory leads to biased estimates of present-bias because the rate of task completion at the deadline is much lower with imperfect memory. Naïve procrastination explains why individuals do not set up reminders despite large gains to doing so. The model offers guidance for empirical studies of reminders, making a distinction between anticipated and unanticipated reminders: anticipated reminders can induce additional procrastination, lowering both welfare and the probability the task is completed. I then use this framework to show how to optimally set deadlines and time the delivery of reminders to present-biased individuals. (JEL: D01,D03,D91)

1. Introduction
Present-bias has been used to explain why individuals often do not take a beneficial action, such as enrolling in retirement savings plans: naive procrastinators do not act today because they plan to act tomorrow, but when tomorrow arrives, they delay again. Deadlines seem to offer a simple solution to the procrastination problem, as they remove the possibility of further delay. For instance, adding a deadline to enroll in a retirement savings plan should induce most present-biased individuals to act: the transaction costs of filling out a form are outweighed by the future benefit even with heavy discounting. It is puzzle, then, that individuals often do not act even when there is a deadline. For instance, individuals can typically only switch health insurance plans during an annual open enrollment period, which provides a natural deadline. Yet a large

The editor in charge of this paper was Nicola Gennaioli.

Acknowledgments: I thank Stefano DellaVigna, David Laibson, Ted O’Donoghue, Matthew Rabin, the editor, anonymous reviewers, and seminar participants at the University of California-Berkeley, Harvard University, and ESA-North America for helpful comments. I thank the Williams College Tyng Committee and the National Science Foundation for financial support. Ericsson is a Faculty Research Fellow at NBER.

E-mail: kericson@bu.edu

1. For instance, Dellavigna (2009) estimates a gain of at least $1200/year for a typical worker who receives an employer subsidy.
literature shows that individuals don’t switch health plans, even though the benefit to switching can be very large— even hundreds or thousands of dollars (see e.g. Handel 2013, Ericson 2014a). Similarly, many students fail to apply for financial aid before important deadlines (King 2004), and individuals fail to submit rebates before they expire (Pechmann and Silk 2013).

At the same time, small reminder interventions have been shown to have an economically significant impact on behavior in a variety of domains, including savings (Karlan, McConnell, Mullainathan, and Zinman, forthcoming), loan repayments (Cadena and Schoar 2011, Karlan, Morten and Zinman, forthcoming), and medication adherence (Nieuwlaat et al. 2014, Bobrow et al. 2016). This presents another puzzle, since individuals can set up their own reminders. Memory technologies are ubiquitous and inexpensive, and include calendars, to-do lists, checklists, and reminder services.

Using theory and calibrations, this paper characterizes how the interaction of limited memory and procrastination affects when and how individuals complete tasks. In doing so, it explains otherwise puzzling behavior. Together, limited memory and present-bias can explain why individuals do not set up reminders despite large gains to doing so, and thus why deadlines may not be effective at ensuring tasks are completed. These interactions also affect parameter estimates: I show ignoring limited memory will lead to substantial misestimation of present-bias from data on task completion. I offer guidance to empirical work on reminders, showing that the distinction between anticipated and unanticipated reminders is important: reminders that are anticipated by a present-biased individual can induce her to procrastinate further, making her worse off and less likely to complete the task. Finally, I show how accounting for these interactions can help principals optimally time deadlines and reminders for their agents.

The way individuals attempt to complete tasks that involve costs in the present but benefits in the future depends on whether individuals are time-consistent or present-biased (O’Donoghue and Rabin 1999a, 1999b, 2001). Present-biased individuals overweight the present relative to the future. Present bias is often modeled with a \(\beta-\delta \) quasi-hyperbolic discount function (Laibson 1997). As a result of present bias, individuals procrastinate in doing tasks. While sophisticated individuals who
recognize their present-bias will wish to bind their future behavior via commitment devices and deadlines, evidence indicates that individuals are at least partially naive about their present-bias, and fail to predict their future behavior (DellaVigna and Malmendier 2006, Acland and Levy 2015).

When individuals make plans to act in the future, memory is relevant— they may forget about the task. A growing literature shows that individuals not only have limited prospective memory— remembering to take an action— but also may have incorrect beliefs about their memory ability. For instance, Ericson (2011) elicits incentivized forecasts of subjects’ subjective probability of remembering to claim a delayed payment, and finds that while their choices imply at least a 75% probability of claim, they only claim the payment about half the time. Similarly, Letzler and Tasoff (2014) find that individuals are overoptimistic about claiming rebates at a delay, claiming about 30% of the time despite believing they would claim about 80% of the time.

I examine individuals who are choosing whether and when to complete a valuable task that entails immediate costs and delayed benefits, extending the present-bias framework of O’Donoghue and Rabin (1999a, 1999b, 2001) to include imperfect memory. I show that the interaction of memory and present-bias is quantitatively important for predicting the time at which individuals complete a task, and as a result, for estimating present-bias parameters from behavior. Data on task completion has often been used to estimate structural models of present-bias, but assuming perfect memory leads to biased estimates. I examine an example designed to capture the decision of whether to switch health plans, and I show that by mistakenly assuming individuals had perfect memory, a researcher would miss evidence of present-bias. The model with present bias and perfect memory predicts a spike in task completion at the deadline. However, individuals with limited memory and present-bias do not show the spike: they forget to act at the deadline, or act earlier so as to avoid forgetting.

When estimating parameters from task completion data, an individual with a present-bias parameter $\beta = 0.8$ and 10% probability of forgetting each period is mistakenly estimated to have $\beta = 0.98$ if perfect memory is assumed. This suggests that existing estimates of β from task completion data could be made much more accurate by accounting for limited memory.

I show that present-bias can explain why individuals don’t set up inexpensive reminders. The cost of setting up reminders bounds the cost of limited memory for time-consistent individuals with correct beliefs, but the loss from limited memory can be much larger for present-biased individuals. Present-biased individuals will often procrastinate on setting up a reminder system (e.g. lists, calendars, and smartphones),

6. Prospective memory is memory for action, and is distinct from retrospective memory (recalling information about the past). See McDaniel and Einstein (2007) for a review.

7. Note that experience may not remove belief biases if learning is incomplete: see Ali (2011) and Schwartzstein (2014).

as doing so entails immediate costs for future benefits. As a result, we should expect to present-biased individuals to be more forgetful than time-consistent individuals.

Present-bias also highlights a new distinction in reminder design: whether reminders should be anticipated or be a surprise. Time-consistent individuals prefer anticipated reminders to surprise ones, because they optimally respond to the flexibility afforded by better memory. However, better memory can enable procrastination, and so anticipated reminders can lower both the probability a present-biased individual completes the task, as well as their welfare. This result provides guidance to empirical studies: when testing the impact of reminders on behavior, it is important to note whether individuals anticipated the reminder intervention when making their plans. A surprise reminder intervention could be quite effective, but once it is scaled up and anticipated, its positive effect could be undone by increased procrastination.

Finally, I examine the optimal timing of reminders and deadlines, which is relevant in many contexts. For instance, firms selling products with recurring purchases (e.g. health insurance) or offering retail promotions must determine when to remind customers about an upcoming decision deadline, as well as when to set the deadline. While previous literature has considered how to set a deadline with present-bias alone and with limited memory alone, I show that accounting for both is quantitatively important. I examine the timing of providing surprise one-shot reminders about an upcoming deadline (e.g. a workplace announcement about the end of an open enrollment period). I show that the optimal time to provide reminders to present-biased individuals can be much later than for time-consistent individuals, because once reminded about a task that had been forgotten, present-biased individuals will procrastinate on completing the task and may forget again.

This paper is connected to the literature on memory and inattention. Holman and Zaidi (2010) analyze the economic consequences of limited memory for time-consistent individuals. They show that in the presence of limited memory, the probability of task completion may decrease in the length of time allocated to it, and that overestimating the probability of remembering can explain the existence of free trials, automatic renewal offers, and rebates. More recently, Taubinsky (2014) analyzes a model of inattentive choice, and considers the role of deadlines and reminders, as well as cues and habits. In an experiment, he finds that longer deadlines lower the probability of task completion without reminders, but that reminders are effective and reduce the effect of deadlines on task completion (see also Shu and Gneezy (2010)). This paper is distinct from both Holman and Zaidi (2010) and Taubinsky (2014)

10. See Holman and Zaidi (2010) and Taubinsky (2014), which I discuss in Section 6. Also see Saez-Marti and Sjögren (2008), who show a principal-agent motivation for deadlines for time-consistent individuals who may be distracted.
11. I refer to “forgetting” and “memory” to refer to not taking a planned action because it does not come to mind. This terminology links to the psychology literature on ”prospective memory”. However, inattention can also be used to describe the same phenomenon, as in Taubinsky (2014).
because it analyzes the interaction of limited memory with present bias. It adds to a growing literature examining the interaction of biases, which can be quite important.\footnote{For instance, Gottlieb (2014) shows how imperfect recall memory interacts with self-image concerns to produce high levels of risk aversion, and Benabou and Tirole (2004) examine the role of personal rules with present-bias and imperfect recall memory. Hsiaw (2013) and Koch and Nafziger (2014) examine present-biased individuals with reference-dependent preferences, with implications for goal-setting and personal rules.}

Other work has developed theories of reminders in different contexts. Bernheim and Thomadsen (2005) examine the interaction between imperfect recall memory and anticipatory utility and develop a theory of reminders. However, their reminders are designed to communicate information about the state of the world, rather than the reminders considered here, which bring a task to mind and prompt action. Bordalo, Gennaioli, and Shleifer (2015) examine the interaction of salience and memory, and show that reminders may have an effect by changing the salience of an attribute even if the recipient had remembered that attribute (e.g. a reminder to "save in case of an emergency" might raise the salience of emergencies.) In contrast, the reminders considered in this paper merely bring a task to mind, but otherwise don’t communicate information or affect salience.

This paper is organized as follows. Section 2 lays out a task completion model and shows how memory affects the cost threshold at which time consistent and present-biased individuals act. This model serves as the workhorse for the rest of the paper, and presents a simple example to illustrate the ideas. Section 3 shows that allowing for limited memory affects estimates of present-bias parameters from task completion data. Section 4 shows present-biased individuals can face large costs from limited memory, since present-bias affects the decision to invest in reminder systems. I then turn to the design of reminders. Section 5 shows that with present-biased individuals, there is an important distinction to be made between anticipated and unanticipated reminders. Section 6 shows how memory affects when to set deadlines and how present-bias affects when to time unanticipated reminders relative to the deadline. Finally, Section 7 concludes.

2. Model: Completing a Task

2.1. Setup

Consider an individual choosing when to do a particular task that involves costs today (effort) but gives benefits in the future. This is a general setup that captures many economically relevant tasks: for instance, choosing to enroll in a health insurance or retirement plan, paying taxes, or going to the gym. O’Donoghue and Rabin (1999a, 1999b, 2001) use a similar framework to analyze the behavior of present-biased individuals. I adapt this framework to allow for the possibility of imperfect memory.
Each period, the individual decides whether to do a task that can be done only once. There is a deadline: after \(T \) periods, the opportunity to do the task disappears. When there is no deadline, \(T = \infty \). The individual can only determine her behavior this period, and cannot commit to future actions.\(^{13}\) If the individual does the task in period \(t \), she pays cost \(c_t \) that period and receives benefit \(y \) in the next period.\(^{14}\) The cost of action \(c_t \) can vary by period, and is drawn independently each period from a known time-invariant distribution \(F \) with associated density function \(f \). I assume \(F \) is continuous, differentiable and has positive density throughout the range \(0 \) to \(\delta y \). (The individual knows her period’s \(c_t \) value before deciding whether to act.) The cost of action includes immediately borne costs, such as lost time, forgone pleasure, physical or cognitive effort exerted, or lowered consumption; it is not meant to capture financial costs that do not immediately translate into lower consumption.

Present-bias is captured by quasi-hyperbolic discounting (Laibson 1997, O’Donoghue and Rabin 1999), in which discounted utility is
\[
 u_t = \beta \left(\sum_{t'=1}^{\infty} \delta^{t-t'} u_{t'} \right),
\]
where \(u_t \) is the flow utility in each period \(t \). All future periods beyond the present period are discounted by \(\beta \leq 1 \), in addition to the standard per period discount factor \(\delta \leq 1 \). When \(\beta = 1 \), the individual is time consistent (TC) and discounts the future exponentially, but when \(\beta < 1 \) the individual has time-inconsistent preferences.

Individuals may not anticipate how present-bias will affect their future behavior. Let the parameter \(\hat{\beta} \) capture individual’s anticipated level of present-bias in future all periods. The literature suggests that individuals are at least partially naive with \(\beta < \hat{\beta} \) (DellaVigna and Malmendier 2006, Acland and Levy 2015). I analyze fully naive present-biased individuals with \(\beta < 1 \) but \(\hat{\beta} = 1 \), so that each period in the future they think they will act like a time-consistent individual.\(^{15}\) I always assume individuals correctly perceive \(\delta \).

I thus examine two types of individuals \(i \in \{ TC, N \} \):

TC: Time Consistent \((\beta = \hat{\beta} = 1) \)
N: Naive, Present-biased \((\beta < \hat{\beta} = 1) \)

I model limited memory as an exponential decay in the probability the task will be recalled (see Levy and Loftus 1984). Each period, an individual with imperfect memory will forget about the task with some probability. If the individual forgets about the task, she cannot act. If she remembers in one period, the probability she remembers in the next period is \(\rho \). Thus, if the individual remembers about the task today, she will

13. In some contexts, the use of commitment devices is possible, but here I consider either non-contractible behaviors or an environment with transactions costs high enough to rule out commitment devices. Note that in any case, individuals who are naive about their present-bias would not pay to take up commitment devices.

14. The value of \(y \) may represent a one-time benefit that is received tomorrow, or a flow of benefits received in the future, beginning tomorrow.

15. In a working paper version, I also examined sophisticated individuals who correctly anticipated their future present-bias. While sophisticates’ strategies can be complex, memory has similar comparative statics.
remember it \(t \) periods from now with probability \(\rho^t \). In this model, forgetting is an absorbing state: once she forgets about the task, she does not remember again.\(^{16}\) I also allow for the possibility that individuals have incorrect beliefs about memory ability: the individual believes her probability of remembering to be \(\hat{\rho} \). If \(\hat{\rho} > \rho \), I say the individual is overconfident.

Because individuals may be present-biased and have incorrect beliefs, the choice of welfare criterion must be explicit. I define welfare the way an individual with present bias and correct beliefs would judge their welfare a period before having the opportunity to do the task. That is, welfare is ex ante welfare as judged from the perspective of \(\beta = 1 \) by an individual who has correct beliefs about their future behavior and memory. Hence, welfare is given by \(U_i = \sum_{t=0}^{\infty} \delta^t u_t \). This definition is natural and is useful for evaluating how individuals choose (or would like to choose) task environments; it is often used (Gruber and Koszegi 2002, O’Donoghue and Rabin 2006, Heidhues and Koszegi 2010). However, it differs from other proposed welfare criteria for individuals with present bias (see e.g. Bernheim and Rangel 2009).

2.2. Action Cost Thresholds

An individual’s behavior today will depend on what she expects to do in the future, about which she may have correct or incorrect beliefs. To determine how individuals behave, I follow O’Donoghue and Rabin (1999a, 1999b, 2001) and require that individuals follow perception-perfect strategies. Perception perfect strategies require that each period’s behavior maximizes that period’s preferences given beliefs about future strategies, and requires that beliefs be dynamically consistent. With dynamically consistent beliefs, individuals think they will act optimally in the future, given their beliefs about future preferences and strategies. The formal definition is given in the appendix; here I describe the implications of perception-perfect strategies for the types in the model.

Individuals choose their current action to maximize their current value function, given their anticipated future strategies.\(^{17}\) Here, a strategy takes the form of a cost

\(^{16}\) This form of limited memory accords with psychological evidence on memory (Mullainathan 2002, Holman and Zaidi 2010): once something is forgotten, it is much less likely to be remembered in the future. Modeling forgetting as a fully absorbing state (as opposed to generalizing the model to allow a positive probability of moving from a state of forgetting to remembering) is a simplification that makes analysis more tractable, akin to how the quasi-hyperbolic discounting model is a simplification of hyperbolic discounting. Moreover, this model of memory is distinct from "slipping the mind", in which an individual forgets this period, but forgetting this period does not affect the probability of remembering in future periods. “Slipping the mind” would also affect the demand for reminders. In the absence of reminders, behavior with “slipping the mind” looks very similar to the case in which the distribution of task costs \(F \) entails some probability of drawing a very high cost. However, the welfare implications of, for instance, inducing someone to act if they had drawn a high task cost would differ from inducing them to act if they had forgotten.

\(^{17}\) Note that the individual only is able to implement the strategy \(t \) periods in the future if she remembers, which she anticipates happens with probability \(\hat{\rho}^t \); if she forgets, she cannot act. However, once she acts, she gets the benefit of the task next period regardless of whether she would have remembered next period.
threshold for action \(c^*_t \): in period \(t \), an individual who remembers acts if and only if \(c_t \leq c^*_t \). Thus, the individual who doesn’t forget will only act if the cost draw is less than or equal to the cutoff. (I assume that if the individual is indifferent between acting and not, she chooses to act.)

The action threshold \(c^*_t \) is chosen to maximize an individual’s current value function \(W^\hat{\rho}_{it} (c) \). The threshold will depend on the expected continuation value \(EV^\hat{\rho}_{it} (c) \), which in turn depends on the distribution of \(c \), the expected future strategies of type \(i \in \{ TC, N \} \), perceived memory ability \(\hat{\rho} \), and period \(t \). Given the recursive structure of the task, we can define the current value functions and perceived continuation value functions. The current value function is

\[
W^\hat{\rho}_{it} (c) = \begin{cases}
\beta \delta y - c & \text{if act} \\
\hat{\rho} \beta \delta EV^\hat{\rho}_{it} & \text{if do not act,} \\
& \text{with values of } \beta = 1 \text{ for time consistent individuals}
\end{cases}
\]

and \(\beta < 1 \) for present-biased individuals. The cutoff strategies are then

\[
c^*_{TC, t} = \delta \left(y - \hat{\rho}EV^\hat{\rho}_{TC, t+1} \right)
\]

\[
c^*_{N, t} = \beta c^*_{TC, t}
\]

Present-biased individuals’ time inconsistent preferences result in their current value function \(W^\hat{\rho}_{it} \) differing from the perceived continuation value function \(V^\hat{\rho}_{it} \). An individual’s continuation value function discounts utils exponentially (since all these periods are in the future), even if he is present-biased. It is a perceived continuation value function because it depends on perceived memory \(\hat{\rho} \), as well as perceived future strategies. Naifs believe they will follow the time consistent strategy in the future, and so their perceived continuation value is the same as that of the time consistent individual: \(V^\hat{\rho}_N (c) = V^\hat{\rho}_{TC} (c) \).

The perceived continuation value functions \(V^\hat{\rho}_i \) for each type are then given as follows:

\[
V^\hat{\rho}_{TC, t} (c) = \max \{ \delta y - c, \hat{\rho} \delta EV^\hat{\rho}_{TC, t+1} \}
\]

\[
V^\hat{\rho}_{N, t} (c) = V^\hat{\rho}_{TC, t} (c)
\]

At the deadline, the continuation value of the task is zero. Only when \(\rho = \hat{\rho} \) and \(\hat{\beta} = \beta = 1 \) are the current value, continuation value, and welfare functions the same.

The strategies (planned and actual action thresholds \(c^*_t \)) for a time-consistent individual are that of a standard optimizing individual: they maximize their perceived

18. For present-biased sophisticates, strategies could be history-dependent (See the discussion in O’Donoghue and Rabin (1999b) for more detail, particularly footnotes 9 and 31.) However, the optimal strategy for a time-consistent individual takes the form of a history-independent action cutoff, as does that of a present-biased naif, since she thinks she will act like a time-consistent individual in the future.
expected utility $W_{TC}^\hat{\beta}$, given their perceived memory $\hat{\rho}$. A time-consistent individual always predicts her behavior correctly, conditional on remembering, but may mispredict her probability of remembering. Naifs maximize their perceived expected utility $W_N^\hat{\beta}$, given their perceived memory $\hat{\rho}$, and given that they expect to act like a time-consistent individual in all future periods. Naifs therefore mispredict their behavior, conditional on remembering, and may also mispredict their probability of remembering.

2.3. Memory and the Probability of Action

An individual can only act in period t if the task is still active. I define a task to be "active" whenever the individual did not act in a previous period and the individual has not forgotten. The probability an individual acts in period t is given by:

$$\Pr(\text{act in } t) = F(c_{it}^*) \Pr(\text{task active in } t)$$

The task is always active in period 0 when the individual first has the opportunity to act. Thereafter, the probability the task is active is given by:

$$\Pr(\text{task active in } t) = \rho^t \prod_{j=0}^{t-1} \left(1 - F(c_{ij}^*)\right)$$

Proposition 1 then shows how memory and beliefs about memory affect behavior.

Proposition 1. Increasing memory ρ, holding constant beliefs about memory $\hat{\rho}$, raises the probability a task is active in each period t but does not affect the probability of completing an active task in period t. Increasing beliefs about memory $\hat{\rho}$ lowers the minimum cost c_{it}^* at which time consistent and present-biased individuals will act in a given period $((dc_{it}^*)/d\hat{\rho} \leq 0)$, and thus lowers the probability an individual acts in period t conditional on the task still being active.

This proposition gives the intuition for how ρ and $\hat{\rho}$ can be separately identified from behavior. Memory itself affects behavior by changing the probability the task is forgotten. Note that beliefs about memory $\hat{\rho}$ only affect behavior via the choice of action cost thresholds. Better perceived memory enables delay, as increasing perceived memory increases the perceived continuation value. The net effect of raising $\hat{\rho}$ on both types is still to decrease c_i^*, and therefore to decrease the probability of action in a given period, conditional on the task still being active.

Grundgeiger et al. (2013) shows an example of how the anticipation of future reminders for a task can lower the probability an individual completes an active task in a given period. In a healthcare simulation using nurses, they randomized whether nurses were given visual cues for various important tasks. These visual cues served as reminders, were anticipated by nurses, and so can be interpreted as raising $\hat{\rho}$. Nurses without the anticipated reminders were more likely to finish their current task before dealing with a potential interruption by other staff; nurses who had reminders were more likely to accept the interruption and postpone doing the task.
2.4. An Example: No Benefit of Delay

How memory affects whether present-biased individuals act at a deadline can be illustrated in a simple example. Consider the case in which the cost of completing the task is constant across all periods with \(c_t = c \) for all \(t \). There is a deadline at period \(T \) after which the opportunity to do the task disappears. I assume \(c \) is low enough to make the task worth doing at some point, but high enough to induce procrastination in present-biased individuals with perfect memory. Precisely, I assume the task is "\(\beta \)-worthwhile" (\(\beta \delta y > c \)) and that a naif will procrastinate with perfect memory:
\[
(1 - \beta \delta) \cdot \beta y > c (1 - \beta \delta) > (1 - \delta) \beta y.
\]

Time-consistent individuals are unaffected by a deadline or memory in this case: so long as ever acting is optimal (\(\delta y \geq c \)), they act immediately. In contrast, the deadline matters for the present-biased naif. With perfect memory, a present-biased naif will always plan to act tomorrow if she doesn’t act today, since she thinks she will be a time-consistent individual in the future. Due to present-bias, she would choose to wait until tomorrow and get utility \(\beta \delta (\delta y - c) \) rather than act today and get utility \(\beta \delta y - c \). This logic repeats itself until the deadline arrives— at which point, she will act because she can no longer delay. If there is no deadline she will never act.

Adding imperfect memory reduces the probability the naif will act at the deadline in two ways. First, if perceived memory is low enough (\(\hat{\rho} \leq (\beta \delta y - c) / (\beta \delta (\delta y - c)) \)), a naive present-biased individual will also act immediately. A present-biased individual perceives a benefit of \(\hat{\rho} \beta \delta (\delta y - c) \) to waiting until tomorrow to act, so as \(\hat{\rho} \) declines, the perceived cost of delay is higher. In this way, we see that awareness of limited memory can have a benefit for present-biased individuals. For instance, \(\hat{\rho} = 0 \) emulates the effect of a commitment device, leading present-biased individuals to act immediately.

Second, for values of \(\hat{\rho} \) not low enough to induce immediate action, the naif will procrastinate and only act at the deadline if she remembers. The naif will only remember with probability \(\rho^T \). The probability of forgetting at the deadline can be substantial: even if \(\rho \) is close to 1, the deadline may be far away. For instance, with \(T = 30 \) days and a 2% chance the naif forgets each day (\(\rho = 0.98 \)), the probability of acting at the deadline is only 0.98^{30} = 55%.

3. Simulating Behavior and Estimating Parameters

3.1. Method: Estimation via GMM

Armed with a model of how tasks are completed when individuals have present-bias and limited memory, we can then turn to interpreting behavior. In this section, I examine the observed patterns of behavior produced by the interaction of limited memory and present-bias, and show that limited memory can explain patterns of behavior that are difficult to explain by present-bias alone. I focus on estimating
parameters from task-completion data, and show that ignoring limited memory gives misleading structural estimates of present-bias (and vice versa).

A number of papers have used data on when tasks are completed to structurally estimate present-bias. For instance, Bisin and Hyndman (2014) structurally estimated values of β in their study on when students complete a task relative to a deadline. In contexts without a deadline, DellaVigna and Malmendier (2006) calibrate a value of β from when individuals cancel gym contracts, and Bernheim, Fradkin, and Popov (2015) estimate values of β that rationalize time to enrollment in retirement savings plans and default taking. Because these models assume perfect memory, a failure to act due to limited memory will affect estimates of present-bias parameters and costs of action. Moreover, individuals who recognize their limited memory may act earlier so as to avoid forgetting, which may create behavior that seems inconsistent with present-bias.

As in Section 2, consider a task with a deadline T. The economist observes only the period the task is completed in (if any). The economist thus observes a vector of task completion probabilities $\mathbf{z} = (z_T, \ldots, z_0)'$, with z_τ being the probability the task is completed τ periods before the deadline. For simplicity, I assume that δ, y, and the distribution of c are known, but that we cannot observe the realizations of c in any given period.

From this data, we can recover estimates of $\beta, \rho,$ and $\hat{\rho}$ via Generalized Method of Moments (GMM). Each set of parameters $(\beta, \rho, \hat{\rho})$ produces a vector $\hat{\mathbf{z}}$ of predicted task completion probabilities, which can be calculated analytically or via simulation. We then have a set of moment conditions that can be used to estimate the parameters:

$$E[\mathbf{z} - \hat{\mathbf{z}}(\beta, \rho, \hat{\rho})] = 0$$

where the probability the task is completed each period z_τ provides the individual moment conditions. Then, we can estimate our parameters via GMM as:

$$\beta, \rho, \hat{\rho} = \arg \min_{\beta, \rho, \hat{\rho} \in [0,1]} [\mathbf{z} - \hat{\mathbf{z}}(\beta, \rho, \hat{\rho})]' [\mathbf{z} - \hat{\mathbf{z}}(\beta, \rho, \hat{\rho})]$$

Here, I equally weight each moment. I avoid the complications of sampling variation and assume the observed vector \mathbf{z} comes from a large sample, since based on the model in the previous section, I am able to exactly calculate $\hat{\mathbf{z}}(\beta, \rho, \hat{\rho})$.

This method allows us to determine what would happen if a researcher ignored the role of memory or present-bias. For instance, researchers ignoring memory (assuming $\rho = \hat{\rho} = 1$) would estimate a β as follows:

19. Relatedly, memory could be added to models in papers estimating present-bias based on when individuals attend the gym (Acland and Levy 2015) or get a mammogram (Fang and Yang 2015). It would also be possible to estimate the interaction of present-bias and limited memory in Damgaard and Gravert (2014)’s study of when individuals give to charity, Tasoff and Letzler (2014)’s examination of rebate claim behavior, and Milkman, Rogers, and Bazerman (2009)’s study of when DVDs are returned.

20. For simplicity, I consider only time-consistent and naive present-biased individuals, so $\hat{\beta} = 1$. The degree of naiveté could also be estimated, either directly from task completion rates or from additional information, such as willingness to use commitment devices.
\[
\beta_{\text{IgnoreMemory}} = \arg\min_{\beta \in [0, 1]} [z - \hat{z}(\beta, 1, 1)]' [z - \hat{z}(\beta, 1, 1)]
\]

Similarly, researchers ignoring present-bias (assuming \(\beta = 1\)) would estimate

\[
\rho_{\text{IgnorePB}}, \hat{\rho}_{\text{IgnorePB}} = \arg\min_{\rho, \hat{\rho} \in [0, 1]} [z - \hat{z}(1, \rho, \hat{\rho})] [z - \hat{z}(1, \rho, \hat{\rho})]'
\]

3.2. Example: Switching Health Plans

Consider an individual changing their health insurance plan from the default choice to their most preferred choice. Let the gain from switching be about twice as large as the transaction costs of making the switch.\(^{21}\) Then, normalize the value of completing the task to be \(y = 1\), and let \(c\) be uniformly distributed between 0.4 and 0.6. Let there be an open enrollment deadline in \(T = 10\) periods; each period could be thought of as a week. Set \(\delta = 0.99\).

Assuming perfect memory with present-bias presents a puzzle. While many people do not in fact switch (Handel 2013, Ericson 2014a), a simple model of moderate present-bias says nearly everyone should take action at or before the deadline— with a large spike in task completion at the deadline. At the deadline, an individual who remembered would act so long as \(\beta \delta y > c\); as a result, even if they drew the highest cost of action in the last period, they would act so long as \(\beta > 0.61\), which is above typical estimates of \(\beta\).

Suppose the individuals completing the task actually had \(\beta = 0.8\) and \(\rho = \hat{\rho} = 0.9\). The solid black line with ■ markers in both panels of Figure 1 plots the resulting probability of action each period: it starts at about 19% in the first period, declines over time to about 1.5% with 1 period left before the deadline, and slightly increases to 4.1% in the very last period, as individuals who still remember the task are induced to act by the deadline. Overall, 71.3% complete the task in the simulated data. I can recover exactly these true parameters when I estimate the model by GMM.

Examine the top panel of Figure 1. The dashed black line with × markers shows the pattern of behavior that would result from an individual with the correct \(\beta = 0.8\) but \(\rho = \hat{\rho} = 1\). It predicts no action until 1 period before the deadline, then a 2% probability of action with 1 period remaining, and then a 98% probability of action in the very final period. Because this simulation ignores the urgency an individual faces as a result of limited memory, it cannot explain why a present-biased individual would act with 10 periods left until the deadline. Moreover, because it neglects the possibility individuals might forget the task, it cannot explain why they do not act at the deadline.

21. For instance, in the U.S. Medicare Part D prescription drug insurance program, the gain for a current enrollee to switching plans has been estimated to be $50-$100 (Ericson 2014); a reasonable estimate for transaction costs of switching is about half that amount. Unfortunately, we don’t know much about the timing within the open enrollment period of when people take action to switch plans.

22. In this model, all that matters is the ratio of benefits \(y\) to costs \(c\), since the net benefit of action is \(\delta y - c\). Thus, it could be a $10 task with $5 costs or $1000 task with $500 costs. In a more complicated model with errors, however, the frequency of errors may depend on the size of the stakes involved.
Table 1. Estimated parameters from observed behavior.

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>ρ</th>
<th>$\hat{\rho}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Parameters</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Ignoring Memory</td>
<td>0.98</td>
<td>Set to 1</td>
<td>Set to 1</td>
</tr>
<tr>
<td>Ignoring Present-bias</td>
<td>Set to 1</td>
<td>0.87</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Notes: Estimated via GMM in Stata. Parameters: c is uniformly distributed between 0.4 and 0.6, $\delta = 0.99$, $y = 1$.

Table 1 shows the estimates that would result if a researcher ignored memory and estimated the level of present-bias (and vice versa). If you assumed perfect memory (fixed ρ and $\hat{\rho}$ at 1), Table 1 shows that the resulting best estimate of β would be 0.98—very close to 1 and substantially above the true $\beta = 0.8$. The researcher would thus miss the existence of present-bias. In the top panel of Figure 1, the gray line with circular markers shows the predicted pattern of behavior with $\beta = 0.98$, $\rho = \hat{\rho} = 1$. The predicted pattern, at first glance, seems close to the observed pattern. Each period before the deadline, the predicted probability of action is slightly higher than the observed probability of action (e.g. 20% v. 19% in the first period, declining to 3.5% v. 1.5% in the period before the deadline). It then underpredicts the small spike at the deadline (3.9% versus the observed 4.1%).

However, there are important differences between the true estimates and the estimates assuming perfect memory. The $\beta = 0.98, \rho = \hat{\rho} = 1$ set of parameters predicts that all individuals will eventually complete the task, despite only 71.3% doing so. Essentially, this set of parameters explains the absence of a spike in task completion at the deadline by assuming away the procrastination problem and having the task be completed earlier. Moreover, this set of parameters predicts that reminders should have no effect on behavior. In contrast, providing a surprise reminder in the last period would have increased task completion to 100% and produced a large spike in completion at the deadline. Similarly, this set of parameters predicts that externally imposed deadlines would not be beneficial, since individuals don’t procrastinate much if $\beta = 0.98$. In contrast, with $\beta = 0.8$, deadlines can be quite helpful (see Section 6).

We can conduct a similar exercise for what would happen if the researcher ignored present-bias and set $\beta = 1$. In this case, Table 1 shows that the best estimate of ρ is 0.87, similar to the truth, but also finds $\hat{\rho} = 1.00$: substantial overconfidence in memory. The gray line with circular markers in the bottom panel of Figure 1 shows the pattern of behavior that results from $\beta = 1, \rho = 0.87$, and $\hat{\rho} = 1.00$. It is relatively close to the true line, with an overestimation of the probability of action in the first three periods but a steeper decline. To see why ignoring present bias leads to an estimate of overconfidence in memory, examine the dashed black line with × markers in the bottom panel, which shows what would result if $\beta = 1$, but with the true $\rho = \hat{\rho} = 0.9$. In this case, an individual would be very likely (73%) to act at the first opportunity, since they recognize they might forget the task. While the reason individuals don’t act at the first opportunity is actually due to present-bias, overconfidence in memory can lead to a similar lack of action.
How ignoring either present bias or memory affects model estimates. Parameters: c is uniformly distributed between 0.4 and 0.6, $\delta = 0.99$, $y = 1$.

4. Present-bias Limits Uptake of Memory Aids

One empirical puzzle is that memory is low and reminder interventions seem to matter in many domains, even though the cost of memory aids is relatively small.
in comparison to the benefits of completing the tasks. Individuals can improve their effective memory through the use of memory technologies, which include planners, personal digital assistants, human assistants, lists, reminder services, etc. Why then does memory still matter? This section examines the choice to invest in one’s own memory. It shows that present-biased naifs can fail to take up inexpensive memory aids even if there are large net gains to doing so.

I consider a simple and stark reminder system, which I term "writing it down". As in Section 2, the individual chooses whether to act each period based on their i.i.d. draw of the task cost c_t. However, the individual also has another option each period: if she does not act, she may write the task down. Writing it down entails a cost of w today, which in turn guarantees perfect memory ($\rho = \hat{\rho} = 1$) in all future periods. (I continue to require that individuals of each type play perception-perfect strategies, including the decision of whether to write.)

Proposition 2 shows that while inexpensive memory technologies bound the cost of limited memory for time consistent individuals, the cost of limited memory for a present-biased naif can be as large as the discounted value of the task. (I define the cost of limited memory to be the expected utility an individual would receive from getting the task with perfect memory, minus the expected utility an individual would receive from getting the task with imperfect memory.) This proposition thus resolves the puzzle of why small reminders can have an effect, even if individuals have a large incentive to set them up themselves.

Proposition 2. Assume individuals have correct beliefs about memory ($\hat{\rho} = \rho$). The cost w of writing bounds the cost of limited memory for a time consistent individual, but not for a present-biased naif. The cost of limited memory for a present-biased naif can be as large as the net value of the task to a time-consistent individual.

A time consistent individual will write immediately or not all. Since a time-consistent individual with correct beliefs will write it down if it is optimal to do so, it is never beneficial to force them to write, or to subsidize reminder systems. With cheap memory aids, we should expect limited memory to play a relatively unimportant role for time-consistent individuals with correct beliefs.

Present-biased naifs believe they will receive the same benefits as time consistent individuals from memory aids. (Section 5 shows that is not the case.) However, the decision of whether to actually write it down is different with present-bias: the costs of writing are immediate but the benefits come in the future. Present-biased naifs can

\[\text{(23. Writing immediately results from the assumption that the cost of writing is constant. This is likely to be roughly true, but some delay in writing could result if the cost of writing fluctuated substantially.)}\]

\[\text{(24. Section 5 shows that increasing memory via anticipated reminders may harm present-biased individuals. As a result, in some cases, naïve present-biased individuals may invest in improving their memory, not realizing that doing so will make them worse off. Individuals who are sophisticated or only partially naïve about their present bias may recognize that anticipated reminders can make them worse off, and though reject even free anticipated reminders.)}\]
procrastinate on writing it down. They will never write if the cost of writing is more than the cost of going one period with imperfect memory, because they misperceive their future actions and plan to write tomorrow. Hence, adding the ability to invest in reminders is akin to overlaying one procrastination problem (the choice of whether to write) on top of another (the choice of whether to act).

The large cost of limited memory for a present-biased naif can be shown in the simple example from Section 2.4, in which the cost of completing the task is constant across all periods. Because a time-consistent individual acts immediately in this example, a present-biased naif always thinks she will act tomorrow if she does not act today, so long as she remembers. The naif then has a choice between writing today and remembering tomorrow for sure, versus risking forgetting tomorrow. She will only write today if the cost of writing is low enough: if \(w < \beta \delta (1 - \rho) (\delta y - c) \).

If \(w \) exceeds that value, she never writes, and each day plans to act tomorrow. As a result, she will act at the deadline \(T \) if she remembers, which happens with probability \(\rho^T \). If memory were perfect, she would act at the deadline for sure. Thus, the cost of limited memory in this case is \((1 - \rho^T) \delta^T (\delta y - c) \). At the deadline gets longer and longer, the cost of limited memory approaches \(\delta^T (\delta y - c) \). Concretely, take the case where \(\beta = 0.8, \delta = 0.99, \rho = 0.98, \) and the net value of the task \(\delta y - c = $25 \). Then, an individual will not set up a reminder unless the cost of doing so is less than 40 cents \((0.8 \times 0.99 \times 0.02 \times $25) \).

Proposition 2 can explain why individuals do not set up reminders to adhere to medication, a known problem (Nieuwlaat et al. 2014). Adhering to recommended medication entails potentially large health benefits. For instance, Goldie et al. (2003) examined medication adherence for patients with HIV, and found that increasing adherence would lead to gains in terms increased length and quality of life that justified even relatively expensive adherence interventions (e.g. $500 to $1000/month). Text messaging reminders, personal organizers, and electronic calendars are very inexpensive, and evidence shows they can be effective in increasing adherence for many diseases, including HIV (Sabin et al. 2015) and high-blood pressure (Bobrow et al. 2016). Why don’t patients set up these reminders themselves? Proposition 2 offers a simple explanation: naive procrastination. The perceived cost of waiting a single day to set up a reminder system is low, but the naive individual keeps procrastinating on setting up the reminder.25

Proposition 2 also provides an additional explanation individuals are overconfident about the probability they remember to do something. For instance, in Ericson (2011), participants forecasted a 75% chance they would remember to claim a $20 payment, but only 50% did so. One explanation is that these individuals never planned to use a reminder, and simply overestimated the probability they would remember. Proposition

25. There is an alternative story that seems implausible: adhering to medication entails side-effects and financial costs that make many patients just about indifferent between taking and not taking medication, despite wide variation in health risk, types of diseases, incomes, and insurance status.
2 suggests that if these individuals were present-biased naifs, they may have planned to use a reminder but then procrastinated on setting it up and forgot.

5. Unanticipated v. Anticipated Reminders

Providing reminders has been proposed as a policy solution for inaction in many domains. Section 4 suggests that doing so might be valuable, since present-biased individuals may not use available memory aids. However, we lack a theory of how to design effective reminders. In this section, I show that the interaction of memory and procrastination highlights a distinction between reminders that individuals anticipate and reminders that are unanticipated (a surprise). While the theory below shows that this distinction is important, many papers about testing reminders (e.g. for health behaviors, such as pill taking, or for appointment scheduling) do not make it clear to what extent study participants anticipated the reminders.

Memory technologies can modeled in a variety of ways. Here, I consider "reminder systems": technologies that lower the probability of forgetting each period: in the model, they raise \(\rho \). A reminder system can be totally effective (raising \(\rho \) to 1) or partially effective. For instance, a to-do list would raise the probability the task is remembered each period, but the to-do list might not be checked every day. I abstract away from the cost of setting up the reminder systems and the decision to do so, and consider what would happen if the reminder system were given to an individual for free.

The crucial distinction between anticipated and unanticipated reminder systems is that perceived memory \(\hat{\rho} \) and thus action cost thresholds \(c^*_t \) are unaffected by unanticipated reminders. For instance, a participant in a study who is told they that will receive weekly text message reminders to call to schedule an appointment can rely on future reminders when deciding when to call, while an individual who is not told that they will receive these text messages faces more urgency to call, since they can’t be assured that they will remember to act in the future. Precisely:

Definition 1. Anticipated reminder systems raise perceived memory \(\hat{\rho} \) and actual memory \(\rho \) by the same amount for a well-calibrated individual for whom \(\hat{\rho} = \rho \). Unanticipated reminder systems raise actual memory \(\rho \) but hold perceived memory \(\hat{\rho} \) constant.

The following propositions show that anticipated can have very different effects from unanticipated reminder systems. While both types of reminder systems make time-consistent individuals better off, they have different effects on present-biased individuals. The first proposition concerns the observable probability the task is completed, while the second examines welfare.

Proposition 3. Assume individuals start with correct memory beliefs (\(\hat{\rho} = \rho \)). For both time-consistent and present-biased individuals, unanticipated reminders always
(weakly) raise the probability the task will be completed, while anticipated reminders may raise or lower the probability the task will be completed.

Proposition 4. Assume individuals start with correct memory beliefs ($\hat{\beta} = \beta$). Time consistent individuals are always made better off by both types of reminder systems, and prefer anticipated to unanticipated reminders. Present-biased individuals may be harmed by anticipated reminders but will always benefit from unanticipated reminders. Anticipated reminders are guaranteed to lower the welfare of present-biased individuals if the probability of action in the first period is high enough, and guaranteed to increase welfare if β is close to 1.

Present-biased individuals face a trade-off that comes from anticipated reminders. Improving memory itself has a welfare gain when there is a potential benefit of delay due to stochastic task costs: the individual is less likely to forget when she waits. Yet when beliefs adjust, better memory also has a cost, because strategies adjust and delay (already inefficiently high for present-biased individuals) is more likely. The harm comes in two ways: first, they may be less likely to complete the task, and second, they may complete the task later (and at higher expected cost). When a present-biased individual is already very likely to act immediately, increasing memory has a strategy response that leads to additional delay, which is a welfare cost, but there is limited direct gain from remembering, since the individual was not delaying often. Conversely, when β is close to 1, they are already near the optimum from a welfare perspective, and so lose less from strategies adjusting; the gain from increasing the probability of remembering to act dominates.

Evidence on how anticipated versus unanticipated reminders affect behavior is limited; I am unaware of any studies directly comparing the two. However, there is some suggestive evidence that anticipated reminders can lower task completion rates differentially for present-biased individuals. For instance, Fernandes and Lynch (2012) examined tasks student participants intended to perform. They compare high v. low "propensity to plan" individuals. It is likely that naive present-biased individuals have a lower propensity to plan (see discussion in Lynch et al. 2010), even though propensity to plan is distinct from time preference. Fernandes and Lynch (2012) had participants set up reminders for themselves, which were thus anticipated by the participants. These reminders led low propensity-to-plan participants both to schedule tasks later and to complete them with lower probability, but increased the probability high propensity-to-plan participants completed the tasks. The propositions can explain this effect: anticipated reminders can harm present-biased individuals but not time-consistent individuals.

Proposition 4 guides our interpretation of how welfare is affected by a change in the probability of task completion due to reminders. For time-consistent individuals (with correct beliefs), reminders that lower or delay the probability of task completion

26. See also related results comparing attentive versus inattentive individuals in Taubinsky (2014).
must still be interpreted as making them better off. However, with present-bias, anticipated reminders can enable delay that is harmful to the individual. Thus, in contrast to time consistent individuals, present-biased individuals can indeed be worse off with an anticipated reminder intervention that lowers the probability of making an important health appointment.

5.1. Example: Anticipated Reminders For Switching Health Plans

I show how anticipated reminders affect behavior and welfare using the example from Section 3.2, switching to a preferred health plan. Figure 2 shows how giving anticipated reminders to a present-biased naif with $\beta = 0.8$ affects the probability of completing the task (left panel) and expected utility from the task (right panel). The x-axis varies the values of ρ; beliefs $\hat{\rho}$ are correct and equal ρ. Anticipated reminders of different quality move the individual from one value of ρ to another. The figure shows that increasing ρ actually decreases expected utility until about $\rho = 0.96$, after which expected utility begins to increase in ρ. (The probability of completing the task moves closely with the expected utility). Thus, imperfect reminders can be quite harmful: a to-do list that is checked only 95% of days might be worse than no to-do list at all. Also note that even perfect reminders leave individuals with lower utility than individuals with relatively poor memory (i.e. an individual is better off with $\rho < 0.7$ than with $\rho = 1$).

27. How can anticipated reminders can raise the welfare of time-consistent individuals even if they lower the probability of task completion? The intuition is that the reminders enable the individual to wait for a good task draw even at some risk of forgetting, rather than completing the task earlier at high cost.
6. Deadline Setting and Timing of Reminders

One shot reminders (e.g. announcements in class, email updates, phones) are often used to bring a task back to mind. The effect of these reminders depends on when they are delivered relative to the deadline, and whether they are anticipated in advance. Understanding when to deliver a reminder first requires understanding how deadlines affect behavior, and optimal deadline setting is affected by both memory and present-bias. In this section, I first establish some results about how to set deadlines with limited memory and present bias when a reminder will not be delivered. I then show when to optimally deliver a one-shot reminder, relative to a deadline. Finally, I consider the joint decision of how to optimally set a deadline, given that one can optimally deliver a one-shot reminder.

6.1. Deadlines

While present-bias alone can motivate deadlines (O’Donoghue and Rabin 1999b, Herweg and Muller 2011), time-consistent individuals with perfect memory are never made better off by shorter deadlines (see e.g. Proposition 6 in Taubinsky 2014). Holman and Zaidi (2010) establish that time-consistent individuals with imperfect memory but correct beliefs are also hurt by shorter deadlines, though shorter deadlines can raise the probability the task is completed. However, with incorrect beliefs, shorter deadlines can make time-consistent individuals better off (Holman and Zaidi (2010) and Taubinsky (2014)). To see the intuition, take the limit case in which the individual is certain to forget but believes she is certain to remember. Extending the deadline from today to tomorrow means she may delay the task to wait for a better cost draw, but then will forget.

The results above extend intuitively to the case of limited memory and present bias. Moreover, I show in Proposition 5 that if shortening a deadline increases the probability an individual completes the task, they cannot have perfect memory even if they are present-biased.

Proposition 5. For individuals with perfect memory, both time consistent and present biased, shorter deadlines lower the probability the task will be eventually completed. With imperfect memory, shorter deadlines can raise the probability of task completion for both time-consistent individuals and present-biased individuals. Shorter deadlines can never raise the welfare of time consistent individuals with correct memory beliefs, but may raise the welfare of present-biased individuals.

The intuition for how longer deadlines can lower the probability of completing a task but raise welfare is similar to how anticipated reminders can lower task completion and raise welfare. Simply consider an individual whose cost of action each period is either zero or slightly below δy. Prior to the deadline, she only acts with the zero cost draw, but at the deadline she will act at either cost if she remembers, though the net
benefit is small if she draws $c \approx \delta y$. A shorter deadline means she is more likely to remember (and act) at the deadline, but would bear a higher expected cost.

Shu and Gneezy (2010) find that longer deadlines for redeeming a gift certificate lowered redemption probability. Similarly, Taubinsky (2014) finds that longer deadlines lower the probability of task completion (when reminders are not provided). This is a puzzle from the perspective of present-bias with perfect memory: Proposition 5 shows that even though lengthening the deadline can harm these individuals, because they delay completing the task, doing so will not lower the probability the task is completed. Yet the results can be explained by imperfect memory: the additional delay from a longer deadline leads to forgetting and a failure to act.

6.1.1. Example: Deadlines for Changing Health Plans. Proposition 5 implies that the optimal deadline length will need to be calibrated to the environment, including parameters for memory and present-bias. I continue to illustrate the considerations involved with setting a deadline using the example from Section 3.2, switching to a preferred health plan.

I begin by defining notation for the value of a deadline. Let the deadline be given by T, and let τ be the number of periods before the deadline. Define $EU_{i,\tau}$ to be the expected utility (welfare) of getting the task with τ periods before the deadline, with no reminders forthcoming. We have for each type i:

$$EU_{i,\tau} = \int_0^{c_{i,T-\tau}^*} (\delta y - c) \, dF(c) + \left[1 - F(c_{i,T-\tau}^*)\right] \delta p EU_{i,\tau-1}$$

where $c_{i,t}^*$ is the cutoff for acting in period t. (In the equation above, note $t = T - \tau$). Note that the cutoff strategies $c_{i,t}^*$ are chosen based on individuals’ current value function, which differs from welfare (unless they are a time-consistent individual with correct beliefs).

In Figure 3, I simulate the utility of different deadline lengths, for different values present-bias, memory, and confidence. (No reminders are delivered in these simulations.) Each panel compares a time-consistent individual to a naive present-biased individual. The left-hand panel examines the case of perfect memory: here, time-consistent individuals gain from longer deadlines, while naifs are made worse off by longer deadlines. Here, with perfect memory, there is an important tradeoff if the level of present-bias is unknown, because the cost to a time-consistent individual from shorter deadlines is similar to the benefit received by naifs from shorter deadlines.

The middle panel shows that with limited memory, longer deadlines are much less valuable for time-consistent individuals than they were in the left panel, as the prospect of forgetting induces them to act quickly. For present-biased naifs, limited memory makes shorter deadlines even more beneficial than they were with perfect memory. Under longer deadlines, the naifs inefficiently delay completing the task, which leads to more forgetting. In this panel, there is little tension between the right deadline for different types of individuals: naifs strongly benefit from short deadlines, while time-consistent individuals are roughly indifferent.
Comparing only the left and middle panels suggests that variation in present-bias is more important than variation in memory for the choice of the deadline, at least in this example. However, the right-most panel shows how large the interaction between overconfidence and present-bias can be. With overconfidence about memory, even time-consistent individuals benefit from shorter deadlines. Moreover, overconfidence has a much bigger effect on present-biased individuals: with overconfidence, the gain to naifs from shorter deadlines becomes quite large.

6.2. Timing One-Shot Reminders

How should one-shot reminders, such as email announcements, be designed so that they are most effective? Here, I consider the optimal timing for an *unanticipated* reminder relative to a set deadline. Providing unanticipated reminders can only increase welfare for both present-biased and time consistent individuals. (In contrast, recall that for present-biased individuals, anticipated reminders may enable procrastination and make them worse off.)

The optimal time to provide a reminder trades off two effects. First, the probability the reminder will be useful increases as time goes on, since the individual is more likely to have forgotten. Second, the value of the reminder (conditional on it being useful) depends on the number of periods until the deadline. If the reminder comes too close to the deadline, the individual may not have time to act after being reminded (i.e. if they are unlucky and get a high task cost draw); if the reminder comes too early, the individual may delay action (due to procrastination or memory overconfidence) and forget before acting.

Figure 3. Welfare and deadlines. Parameters: c is uniformly distributed between 0.4 and 0.6, $\delta = 0.99$, $y = 1$. For time-consistent $\beta = 1$, for naif $\tilde{\beta} = 1$, $\beta = 0.8$. For perfect memory, $\rho = 1$, for limited memory $\rho = \hat{\rho} = 0.9$, for overconfident about memory, $\hat{\rho} = 1$, $\rho = 0.9$.
Reminders are only useful28 when the individual has forgotten and not yet acted. The probability a reminder is useful increases as time passes, and can be recursively defined. Note that a reminder is not useful in period 0 when an individual just gets the task. Then, the following equation gives the probability a reminder delivered \(t \) periods into the task is useful:

\[
\Pr(\text{useful}_t) = \Pr(\text{useful}_{t-1}) + (1 - \rho) \left[1 - F \left(c^*_{t-1} \right) \right] \Pr(\text{task active in } t - 1)
\]

\[
= (1 - \rho) \sum_{k=0}^{t-1} \rho^k \prod_{j=0}^{k} \left(1 - F \left(c^*_{ij} \right) \right)
\]

To understand the logic behind this formula, note that a reminder is always useful if it was useful in the previous period: in these cases, the individual has forgotten, implying she would not be able to act. A reminder becomes newly useful if an individual does not act in a period in which the task was active, and then forgets. This happens \((1 - \rho) \left[1 - F \left(c_{t-1} \right) \right] \) of the time that the task is active. Finally, recall that the probability the task was active in period \(t \) is the probability the task is remembered \((\rho^t) \) but not acted on previously. Note that the probability a reminder is useful depends directly on \(t \) (the number periods after the start of the task that it is delivered), as well as indirectly on the deadline length \(T \), since the deadline affects the action cost thresholds \(c^* \).

When a reminder is useful, it effectively gives the individual the task anew, but with a deadline of the time remaining. Thus, we can apply the results of Section 6.1. Then, for a task with a deadline in period \(T \), the value of a useful reminder given in period \(t \) is \(EU_{T-t,i} \). The discounted expected value of a reminder \(t \) periods into a task with deadline \(T \) is then simply given by the following product:

\[
\text{ReminderValue}_i (t, T) = \delta^t EU_{T-t,i} \Pr(\text{useful}_t)
\]

While the probability a reminder is useful is increasing in \(t \), the value of a useful reminder \(EU_{T-t,i} \) can increase or decrease with \(t \), since shorter deadlines can sometimes yield higher expected utility when there is procrastination.

6.2.1. Example: Reminders Before Health Plan Enrollment Deadline. I show how present-bias affects the optimal timing using the example from Section 3.2, switching to a preferred health plan. As before, the cost \(c_t \) of doing the task varies from 40\% to 60\% (uniformly distributed) of the benefit \(y \), and individuals have correct memory beliefs \((\hat{\rho} = \rho = 0.9) \). I let the deadline be in period \(T = 15 \). I distinguish between time-consistent individuals and present-biased naives with \(\beta = 0.8 \).

The leftmost panel of Figure 4 shows how the value of one-shot reminders varies by when they are given: it plots \text{ReminderValue}, separately for time-consistent and
present-biased individuals. The center panel plots the probability the reminder will be useful, \(\Pr(\text{useful}_t) \), and the rightmost panel plots the value of a useful reminder \(EU_{i,t} \), the value of getting the task with \(\tau = T - t \) periods before the deadline and with no further reminders forthcoming.

For a time-consistent individual, the left panel shows that a reminder is most valuable in period 4, but does not vary that much over time. This individual is very likely to act early (their probability of acting in the first period is about 74%), and so if they have not acted by period 4 it is likely they have forgotten, in which case it is valuable to give them a reminder quickly so that they can act without further delay.

In contrast, in this example, the best time to give a reminder to a present-biased naif is in the very last period. The naif has a low probability of acting early on (only 19% in the first period). Thus, even though the reminder is potentially useful because they may have forgotten (Figure 4, center panel), it will not actually be used because the naif continues to procrastinate. The high value of the reminder in the final period then comes from the fact that the naif is better off without the ability to procrastinate and forget: it is better to get the task with a short deadline than a long deadline (Figure 4, rightmost panel). By contrast, the value of the task to a time consistent individual increases as the deadline lengthens, driving the result that their reminder should be early.

6.3. Jointly Choosing Deadlines and Reminders

The previous subsections considered when to set the deadline, given that no reminder was forthcoming, and then when to set a reminder relative to a deadline. The joint decision—how to choose a deadline, given that an optimal one-shot reminder will be delivered—is also of interest.
For each deadline T, we can find t_T^*, is the optimal period in which to deliver the one-shot unanticipated reminder, given a deadline of T. From the previous section, we have:

$$t_T^* = \arg \max_t \text{ReminderValue}_i(t, T).$$

Recall that we defined $EU_{i, \tau}$ to be the expected utility of being given the task with τ periods until the deadline, given no reminders forthcoming. Let $EU_{i, T}^{\text{reminder}}$ be the expected utility of being given the task with a deadline T and with an optimally timed one-shot unanticipated reminder. Because unanticipated reminders don’t affect strategies, this can just be represented as the sum of getting the task without a reminder plus the discounted expected value of a reminder given in period t_T^*:

$$EU_{i, T}^{\text{reminder}} = EU_{i, T} + 8^{t_T^*} \text{ReminderValue}_i(t^*, T)$$

Recall that the optimal deadline could be infinite (as is the case for time-consistent individuals with correct beliefs). If the optimal deadline is finite, it can be found simply by searching over the space of potential deadlines: the optimal deadline $T^* = \arg \max_T EU_{i, T}^{\text{reminder}}$.

7. Conclusion

Psychology paints a rich picture of individual decision making. Considering a single phenomenon in isolation may be misleading, which has implications for measuring present-bias from task completion behavior. When procrastinators don’t complete a task, it could result from either present-bias or limited memory. Researchers calibrating models of present bias or making inferences about naiveté or sophistication should take into account the effects limited memory may have on individuals’ behavior, or estimates will be biased.

In this task completion framework, memory and present bias interact in ways that are interesting, welfare relevant, and that affect reminder and deadline design. Other work could explore how additional biases interact in this framework, such as overoptimism about the distribution of costs (which can manifest itself as the planning fallacy). The interaction of memory and procrastination could be explored in a number of different areas, such as the design of commitment contracts. While this paper focused on a binary decision (individuals either did or did not act), the model could also be extended to an effort choice decision (e.g. as in Herweg and Muller 2011).

These results can also help design better interventions. It can be valuable to tailor reminder interventions based on individuals’ level of present-bias. The optimal

29. I anticipate the results would extend intuitively, since a higher probability of forgetting creates more urgency to act earlier, thereby increasing effort in earlier periods. Thus, while unanticipated reminders won’t affect effort choice before the reminder is delivered, while anticipated reminders can lead to lower effort in earlier periods.
deadline length varies substantially based on memory. Moreover, the timing of when to deliver reminders should vary based on present-bias: early reminders help time-consistent individuals complete the task faster, but are wasted on present-bias individuals if they simply procrastinate in response. Notably, anticipated reminders are more effective than unanticipated reminders for time-consistent individuals, but can actually harm present-biased individuals. Unanticipated reminders can be quite effective for present-biased individuals, but more work is necessary to determine how best to deliver surprise reminders without leading individuals to expect subsequent reminders.

Beyond just reminders and deadlines, this memory and procrastination framework could also be applied to the design of sales offers (such as rebates) and other incentive contracts. Moreover, just as memory and present-bias affect the use of reminder systems, future work could explore their role in the decision to automate tasks (i.e. having a rent payment automatically deducted versus remembering to send a payment), choose dynamic renewal defaults (e.g. as in Ericson 2014b), or choose commitment devices (as in Laibson 2015).

References

Neuroscience, 27, 5796-804.

