Title - Emotional states and the COVID-19 pandemic: evolution, national differences, and their relationship with emergency policies

Authors and affiliations and contact emails
Zhiming Cheng (University of New South Wales, zhiming.cheng@unsw.edu.au)
Silvia Mendolia (University of Wollongong, smendoli@uow.edu.au)
Alfredo Paloyo (University of Wollongong, apoloyo@uow.edu.au)
David Savage (University of Newcastle, david.savage@newcastle.edu.au)
Massimiliano Tani (University of New South Wales, m.tani@adfa.edu.au)

Abstract
We propose to study the effect of COVID-19 on the emotional states of people in OECD and other countries by applying content analysis to internet searches recorded via Google Trends since 31 December 2019. Our aim is to understand how emotional states evolved as people progressively came to know the first confirmed cases of COVID-19 and deaths, and then experienced governments’ introduction of social distancing, lockdowns and programs to support firms and employment. In particular, we will focus on emotions concerning employment and economic considerations, but also particular attention to the rise of emotions related to mental health and wellbeing.

We will analyse the relationship between timing of government responses to the pandemic in various countries and individuals’ Google searches related to various emotional states. We will employ a variant of the normal content analysis as used by Savage and Torgler (2013) to compare frequency and count analysis of Google search terms. The data are classified as ‘open microphone’, meaning that every search term is captured without knowing the number people involved or the intended focus of the search. This means that it is difficult to compare changes in word counts over time as it is unclear how many people are using the service. However, only comparing the frequency of certain terms appearing does not give a clear indication of the volume of searches. As such both frequency and count analysis are used since neither one alone provides a complete by itself. Furthermore, it is important to understand the distribution of the ‘normal’ daily search traffic so we are able compare any variations that are triggered by a specific event.

Other explanatory variables will include country-specific counts of COVID-19 cases and death rates at a given date, to measure the stock of information about the pandemic available to the population and variables measuring country proximity to the known hotspots. Additional country characteristics, such as population density, demographic structure, living conditions, and cultural values will be used as control variables in the analysis

Data description

Google Trends data
Data from Google searches will be grouped through the dictionary classifications of the Linguistic Enquiry and Word Count (LIWC)
Data on government responses

COVID-19 policy response will be derived from the Oxford COVID-19 Government Response Tracker (OxCGRT) database, which provides daily country-specific information on government responses to COVID-19 epidemic, such as school and workplace closing, restriction on internal movement, public information campaigns, etc.

Data on COVID-19 Cases

New information about the spread of and damage from the COVID-19 infections will be proxied with domestic and proximal (e.g. neighbouring countries’) daily data on the COVID-19 mortality available from variety of sources (e.g. worldometer and Johns Hopkins University; European Centre of Disease Prevention and Control COVID-19 cases and deaths database). We will also explore the possibility of using data on national media reports and other sources to construct COVID-19 information variables.

Country characteristics

OECS Data on population density, demographic structure, living conditions will be included in the analysis.

Data from the World Values Survey, including cultural values, social tolerance and trust; attitudes towards justice, moral principles, corruption, accountability and risk, national security, and global governance will be included to control for factors which may correlate with an individual’s emotion, sense of security, and feelings in time of crisis.

JEL codes for the project - D83, D91, H12, I10, I31

Key-words: COVID-19, emotions, emergency policy, mental health, wellbeing, internet search, Google trends