Title: Panel Forecasts of Country-Level Covid-19 Infections

Authors:

1) Laura Liu
Department of Economics
Indiana University
100 S. Woodlawn Avenue
Bloomington, IN 47405
USA
Email: lauraiu@iu.edu
Job title: Assistant Professor of Economics

2) Hyungsik Roger Moon
Department of Economics
University of Southern California
KAP 300
Los Angeles, CA 90089
USA
Email: moonr@usc.edu
Job title: Professor of Economics

Additional affiliations to be listed:
- Leonard D. Schaeffer Center for Health Policy & Economics, in short: USC Schaeffer Center
- Yonsei University

3) Frank Schorfheide
Department of Economics
University of Pennsylvania
133 S. 36th Street
Philadelphia, PA 19104
USA
Email: schorf@ssc.upenn.edu
Job title: Professor of Economics

Additional affiliations to be listed:
- CEPR
- NBER (= National Bureau for Economic Research)
- PIER (= Penn Institute for Economic Research)

Abstract: We use dynamic panel data models to generate density forecasts for daily Covid-19 infections for a panel of countries/regions. At the core of our model is a specification that assumes that the growth rate of active infections can be represented by autoregressive fluctuations around a downward sloping deterministic trend function with a break. Our fully Bayesian approach allows us to flexibly estimate the cross-sectional distribution of heterogeneous coefficients and then implicitly use this distribution as prior to construct Bayes forecasts for the individual time series. According to our model, there is a lot of
uncertainty about the evolution of infection rates, due to parameter uncertainty and the realization of future shocks. We find that over a one-week horizon the empirical coverage frequency of our interval forecasts is close to the nominal credible level. Weekly forecasts from our model are published at https://laurayuliu.com/covid19-panel-forecast/.

JEL Classification: C11, C23, C53

Key words: Bayesian inference, Covid-19, density forecasts, interval forecasts, panel data models, random effects, SIR model.

Acknowledgements: We thank the Johns Hopkins University Center for Systems Science and Engineering for making Covid-19 data publicly available on Github and Evan Chan for his help developing the website on which we publish our forecasts. Moon and Schorfheide gratefully acknowledge financial support from the National Science Foundation under Grants SES 1625586 and SES 1424843, respectively.

Dataset: The data set is obtained from CSSE at Johns Hopkins University (https://github.com/CSSEGISandData/COVID-19). We define the total number of active infections in location \(i \) and period \(t \) as the number of confirmed cases minus the number of recovered cases and deaths. We understand that infections are measured with error because there is evidence that a significant number of infected individuals are asymptomatic and hence not captured in the official statistics. Moreover, determining the precise number of Covid-19 related deaths is non-trivial (dying with versus dying of Covid-19). The goal of our modeling effort is to predict the number of active infections as recorded in the CSSE data set.

URL: a working paper and updated forecasts are available at: https://laurayuliu.com/covid19-panel-forecast/index.html